Fluid-Like Swarms with Predictable Macroscopic Behavior
نویسندگان
چکیده
This paper is concerned with assuring the safety of a swarm of agents (simulated robots). Such behavioral assurance is provided with the physics method called kinetic theory. Kinetic theory formulas are used to predict the macroscopic behavior of a simulated swarm of individually controlled agents. Kinetic theory is also the method for controlling the agents. In particular, the agents behave like particles in a moving gas. The coverage task addressed here involves a dynamic search through a bounded region, while avoiding multiple large obstacles, such as buildings. In the case of limited sensors and communication, maintaining spatial coverage – especially after passing the obstacles – is a challenging problem. Our kinetic theory solution simulates a gas-like swarm motion, which provides excellent coverage. Finally, experimental results are presented that determine how well the macroscopic-level theory, mentioned above, predicts simulated swarm behavior on this task.
منابع مشابه
Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms
In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceed...
متن کاملA Review of Probabilistic Macroscopic Models for Swarm Robotic Systems
In this paper, we review methods used for macroscopic modeling and analyzing collective behavior of swarm robotic systems. Although the behavior of an individual robot in a swarm is often characterized by an important stochastic component, the collective behavior of swarms is statistically predictable and has often a simple probabilistic description. Indeed, we show that a class of mathematical...
متن کاملHopper Bands: Locust Aggregation
Locust swarms cause famine and hunger in parts of Sub-Saharan Africa as they travel across croplands and eat vegetation. Current models start with biological properties of locusts and analyze the macroscopic behavior of the system. These models exhibit the desired migratory behavior, but do so with too many parameters. To account for this, a new model, the Alignment and Intermittent Motion (AIM...
متن کاملModeling and simulation of swarms for collecting objects
A mathematic model is established to describe a swarm with multi-behavior. Regarding a swarm designed for cooperative task, we propose a model which includes a macroscopic model and a individual-based model. The macroscopic framework model describes global dynamics of swarms, which is normally expressed by dynamical populations’ densities with different behaviors, while the individual-based fra...
متن کاملModelling and analyzing adaptive self-assembling strategies with Maude
Building adaptive systems with predictable emergent behavior is a challenging task and is becoming a critical need. The research community has accepted the challenge by proposing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. Our own contribution in this regard is a conceptual framework for adaptation centered around the stressed rol...
متن کامل